Existence of solutions for the surface electromigration equation

نویسندگان

چکیده

We consider a model that describes electromigration in nanoconductors known as surface (SEM) equation. Our purpose here is to establish local well-posedness for the associated initial value problem Sobolev spaces from two different points of view. In first one, we study pure Cauchy and $H^s(\mathbb{R}^2)$, $s>1/2$. second on background Korteweg-de Vries solitary traveling wave less regular space. To obtain our results make use smoothing properties solutions linear corresponding Zakharov-Kuznetsov equation latter problem. For former bilinear estimates Fourier restriction established by Molinet Pilod.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of positive solutions for a boundary value problem of a nonlinear fractional differential equation

This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.

متن کامل

Qualitative Properties and Existence of Solutions for a Generalized Fisher-like Equation

This paper is devoted to the study of an eigenvalue second order differential equation, supplied with homogenous Dirichlet conditions and set on the real line. In the linear case, the equation arises in the study of a reaction-diffusion system involved in disease propagation throughout a given population. Under some relations upon the real parameters and coefficients, we present some existence ...

متن کامل

Existence and Regularity of Weak Solutions to the Prescribed Mean Curvature Equation for a Nonparametric Surface

It is known that for the parametric Plateau’s problem, weak solutions can be obtained as critical points of a functional (see [2, 6, 7, 8, 10, 11]). The nonparametric case has been studied for H = H(x,y) (and generally H = H(x1, . . . ,xn) for hypersurfaces in Rn+1) by Gilbarg, Trudinger, Simon, and Serrin, among other authors. It has been proved [5] that there exists a solution for any smooth ...

متن کامل

Global Existence of Weak Solutions for the Burgers-Hilbert Equation

This paper establishes the global existence of weak solutions to the Burgers-Hilbert equation, for general initial data in L(IR). For positive times, the solution lies in L2∩L∞. A partial uniqueness result is proved for spatially periodic solutions, as long as the total variation remains locally bounded.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 2021

ISSN: ['0951-7715', '1361-6544']

DOI: https://doi.org/10.1088/1361-6544/abfae6